Combining a monad and a comonad

نویسندگان

  • John Power
  • Hiroshi Watanabe
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Should I use a Monad or a Comonad ?

The category theoretic structures of monads and comonads can be used as an abstraction mechanism for simplifying both language semantics and programs. Monads have been used to structure impure computations, whilst comonads have been used to structure context-dependent computations. Interestingly, the class of computations structured by monads and the class of computations structured by comonads...

متن کامل

Patterns for computational effects arising from a monad or a comonad

This paper presents equational-based logics for proving first order properties of programming languages involving effects. We propose two dual inference system patterns that can be instanciated with monads or comonads in order to be used for proving properties of different effects. The first pattern provides inference rules which can be interpreted in the Kleisli category of a monad and the coK...

متن کامل

Coalgebraic semantics for timed processes

We give a coalgebraic formulation of timed processes and their operational semantics. We model time by a monoid called a “time domain”, and we model processes by “timed transition systems”, which amount to partial monoid actions of the time domain or, equivalently, coalgebras for an “evolution comonad” generated by the time domain. All our examples of time domains satisfy a partial closure prop...

متن کامل

The 2-category of Weak Entwining Structures

A weak entwining structure in a 2-category K consists of a monad t and a comonad c, together with a 2-cell relating both structures in a way that generalizes a mixed distributive law. A weak entwining structure can be characterized as a compatible pair of a monad and a comonad, in 2-categories generalizing the 2-category of comonads and the 2-category of monads in K , respectively. This observa...

متن کامل

Galois Functors and Entwining Structures

Galois comodules over a coring can be characterised by properties of the relative injective comodules. They motivated the definition of Galois functors over some comonad (or monad) on any category and in the first section of the present paper we investigate the role of the relative injectives (projectives) in this context. Then we generalise the notion of corings (derived from an entwining of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 280  شماره 

صفحات  -

تاریخ انتشار 2002